
 International Journal of Education and Science Research

 Review E- ISSN 2348-6457

 Volume-1, Issue-6 December- 2014 P- ISSN2349-1817

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 56

Effective Software Testing Approaches

Madhu Pundir M.K. Sharma

Department of Computer Science Dept of Mathematics

Monad University R.S.S. (PG) College

Hapur Pilkhuwa, Hapur

ABSTRACT:

Software testing is any activity aimed at evaluating an attribute or capability of a program or system and

determining that it meets its required results. Although crucial to software quality and widely deployed by

programmers and testers, software testing still remains an art, due to limited understanding of the principles of

software. The difficulty in software testing stems from the complexity of software: we cannot completely test a

program with moderate complexity. Testing is more than just debugging. The purpose of testing can be quality

assurance, verification and validation, or reliability estimation. Testing can be used as a generic metric as well.

Correctness testing and reliability testing are two major areas of testing. Software testing is a trade-off between

budget, time and quality.

Keywords: Reliability, Debugging, Feasibility, Complex systems

1. INTRODUCTION

Software Testing is the process of executing a program or system with the intent of finding errors. Or, it

involves any activity aimed at evaluating an attribute or capability of a program or system and determining that

it meets its required results. Software is not unlike other physical processes where inputs are received and

outputs are produced. Where software differs is in the manner in which it fails. Most physical systems fail in a

fixed (and reasonably small) set of ways. By contrast, software can fail in many bizarre ways. Detecting all of

the different failure modes for software is generally infeasible. Unlike most physical systems, most of the

defects in software are design errors, not manufacturing defects. Software does not suffer from corrosion, wear-

and-tear -- generally it will not change until upgrades, or until obsolescence. So once the software is shipped,

the design defects -- or bugs -- will be buried in and remain latent until activation.

Software bugs will almost always exist in any software module with moderate size: not because programmers

are careless or irresponsible, but because the complexity of software is generally intractable -- and humans have

only limited ability to manage complexity. It is also true that for any complex systems, design defects can never

be completely ruled out. Discovering the design defects in software is equally difficult, for the same reason of

complexity. Because software and any digital systems are not continuous, testing boundary values are not

sufficient to guarantee correctness. All the possible values need to be tested and verified, but complete testing is

infeasible. Exhaustively testing a simple program to add only two integer inputs of 32-bits (yielding 2^64

distinct test cases) would take hundreds of years, even if tests were performed at a rate of thousands per second.

Obviously, for a realistic software module, the complexity can be far beyond the example mentioned here. If

inputs from the real world are involved, the problem will get worse, because timing and unpredictable

environmental effects and human interactions are all possible input parameters under consideration. A further

complication has to do with the dynamic nature of programs. If a failure occurs during preliminary testing and

International Journal of Education and Science Research Review
 Volume-1, Issue-6 December- 2014 E- ISSN 2348-6457, P- ISSN 2349-1817

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 57

the code is changed, the software may now work for a test case that it didn't work for previously. But its

behaviour on pre-error test cases that it passed before can no longer be guaranteed. To account for this

possibility, testing should be restarted. The expense of doing this is often prohibitive.

An interesting analogy parallels the difficulty in software testing with the pesticide, known as the Pesticide

Paradox: Every method you use to prevent or find bugs leaves a residue of subtler bugs against which those

methods are ineffectual. But this alone will not guarantee to make the software better, because the Complexity

Barrier principle states: Software complexity (and therefore that of bugs) grows to the limits of our ability to

manage that complexity. By eliminating the (previous) easy bugs you allowed another escalation of features and

complexity, but his time you have subtler bugs to face, just to retain the reliability you had before. Society

seems to be unwilling to limit complexity because we all want that extra bell, whistle, and feature interaction.

Thus, our users always push us to the complexity barrier and how close we can approach that barrier is largely

determined by the strength of the techniques we can wield against ever more complex and subtle bugs.

2. TESTING

Regardless of the limitations, testing is an integral part in software development. It is broadly deployed in

every phase in the software development cycle. Typically, more than 50% percent of the development time is

spent in testing. Testing is usually performed for the following purposes:

To improve quality
As computers and software are used in critical applications, the outcome of a bug can be severe. Bugs can cause

huge losses. Bugs in critical systems have caused airplane crashes, allowed space shuttle missions to go awry,

halted trading on the stock market, and worse. Bugs can kill. Bugs can cause disasters. The so-called year 2000

(Y2K) bug has given birth to a cottage industry of consultants and programming tools dedicated to making sure

the modern world doesn't come to a screeching halt on the first day of the next century. In a computerized

embedded world, the quality and reliability of software is a matter of life and death.

Quality means the conformance to the specified design requirement. Being correct, the minimum requirement of

quality, means performing as required under specified circumstances. Debugging, a narrow view of software

testing, is performed heavily to find out design defects by the programmer. The imperfection of human nature

makes it almost impossible to make a moderately complex program correct the first time. Finding the problems

and get them fixed is, the purpose of debugging in programming phase.

For Verification & Validation (V&V)

Just as topic indicated, another important purpose of testing is verification and validation (V&V). Testing can

serve as metrics. It is heavily used as a tool in the V&V process. Testers can make claims based on

interpretations of the testing results, which either the product works under certain situations, or it does not work.

We can also compare the quality among different products under the same specification, based on results from

the same test.

We cannot test quality directly, but we can test related factors to make quality visible. Quality has three sets of

factors -- functionality, engineering, and adaptability. These three sets of factors can be thought of as

dimensions in the software quality space. Each dimension may be broken down into its component factors and

considerations at successively lower levels of detail. Table 1 illustrates some of the most frequently cited

quality considerations.

International Journal of Education and Science Research Review
 Volume-1, Issue-6 December- 2014 E- ISSN 2348-6457, P- ISSN 2349-1817

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 58

Functionality (exterior

quality)

Engineering (interior

quality)

Adaptability (future

quality)

Correctness Efficiency Flexibility

Reliability Testability Reusability

Usability Documentation Maintainability

Integrity Structure

Table 1. Typical Software Quality Factors

Good testing provides measures for all relevant factors. The importance of any particular factor varies from

application to application. Any system where human lives are at stake must place extreme emphasis

on reliability and integrity. In the typical business system usability and maintainability are the key factors, while

for a one-time scientific program neither may be significant. Our testing, to be fully effective, must be geared to

measuring each relevant factor and thus forcing quality to become tangible and visible.

Tests with the purpose of validating the product works are named clean tests, or positive tests. The drawbacks

are that it can only validate that the software works for the specified test cases. A finite number of tests cannot

validate that the software works for all situations. On the contrary, only one failed test is sufficient enough to

show that the software does not work. Dirty tests, or negative tests, refer to the tests aiming at breaking the

software, or showing that it does not work. A piece of software must have sufficient exception handling

capabilities to survive a significant level of dirty tests.

A testable design is a design that can be easily validated, falsified and maintained. Because testing is a rigorous

effort and requires significant time and cost, design for testability is also an important design rule for software

development.

For reliability estimation
Software reliability has important relations with many aspects of software, including the structure, and the

amount of testing it has been subjected to. Based on an operational profile (an estimate of the relative frequency

of use of various inputs to the program), testing can serve as a statistical sampling method to gain failure data

for reliability estimation.

Software testing is not mature. It still remains an art, because we still cannot make it a science. We are still

using the same testing techniques invented 20-30 years ago, some of which are crafted methods or heuristics

rather than good engineering methods. Software testing can be costly, but not testing software is even more

expensive, especially in places that human lives are at stake. Solving the software-testing problem is no easier

than solving the Turing halting problem. We can never be sure that a piece of software is correct. We can never

be sure that the specifications are correct. No verification system can verify every correct program. We can

never be certain that a verification system is correct either.

3. KEY CONCEPTS:

3.1 Taxonomy

There is a plethora of testing methods and testing techniques, serving multiple purposes in different life cycle

phases. Classified by purpose, software testing can be divided into: correctness testing, performance testing,

reliability testing and security testing. Classified by life-cycle phase, software testing can be classified into the

following categories: requirements phase testing, design phase testing, program phase testing, evaluating test

results, installation phase testing, acceptance testing and maintenance testing. By scope, software testing can be

categorized as follows: unit testing, component testing, integration testing and system testing.

International Journal of Education and Science Research Review
 Volume-1, Issue-6 December- 2014 E- ISSN 2348-6457, P- ISSN 2349-1817

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 59

3.2 Correctness testing

Correctness is the minimum requirement of software, the essential purpose of testing. Correctness testing will

need some type of oracle, to tell the right behaviour from the wrong one. The tester may or may not know the

inside details of the software module under test, e.g. control flow, data flow, etc. Therefore, either a white-box

point of view or black-box point of view can be taken in testing software. We must note that the black-box and

white-box ideas are not limited in correctness testing only

.

3.2.1 Black-box testing

The black-box approach is a testing method in which test data are derived from the specified functional

requirements without regard to the final program structure. It is also termed data-driven, input/output driven or

requirements-based testing. Because only the functionality of the software module is of concern, black-box

testing also mainly refers to functional testing -- a testing method emphasized on executing the functions and

examination of their input and output data. The tester treats the software under test as a black box -- only the

inputs, outputs and specification are visible, and the functionality is determined by observing the outputs to

corresponding inputs. In testing, various inputs are exercised and the outputs are compared against specification

to validate the correctness. All test cases are derived from the specification. No implementation details of the

code are considered.

It is obvious that the more we have covered in the input space, the more problems we will find and therefore we

will be more confident about the quality of the software. Ideally we would be tempted to exhaustively test the

input space. But as stated above, exhaustively testing the combinations of valid inputs will be impossible for

most of the programs, let alone considering invalid inputs, timing, sequence, and resource variables.

Combinatorial explosion is the major roadblock in functional testing. To make things worse, we can never be

sure whether the specification is either correct or complete. Due to limitations of the language used in the

specifications (usually natural language), ambiguity is often inevitable. Even if we use some type of formal or

restricted language, we may still fail to write down all the possible cases in the specification. Sometimes, the

specification itself becomes an intractable problem: it is not possible to specify precisely every situation that can

be encountered using limited words. And people can seldom specify clearly what they want -- they usually can

tell whether a prototype is, or is not, what they want after they have been finished. Specification problems

contribute approximately 30 per cent of all bugs in software. [Beizer95]

The research in black-box testing mainly focuses on how to maximize the effectiveness of testing with

minimum cost, usually the number of test cases. It is not possible to exhaust the input space, but it is possible to

exhaustively test a subset of the input space. Partitioning is one of the common techniques. If we have

partitioned the input space and assume all the input values in a partition is equivalent, then we only need to test

one representative value in each partition to sufficiently cover the whole input space. Domain testing partitions

the input domain into regions, and considers the input values in each domain an equivalent class. Domains can

be exhaustively tested and covered by selecting a representative value(s) in each domain. Boundary values are

of special interest. Experience shows that test cases that explore boundary conditions have a higher payoff than

test cases that do not. Boundary value analysis requires one or more boundary values selected as representative

test cases. The difficulties with domain testing are that incorrect domain definitions in the specification cannot

be efficiently discovered. Good partitioning requires knowledge of the software structure. A good testing plan

will not only contain black-box testing, but also white-box approaches, and combinations of the two.

3.2.2 White-box testing
Contrary to black-box testing, software is viewed as a white-box, or glass-box in white-box testing, as the

structure and flow of the software under test are visible to the tester. Testing plans are made according to the

details of the software implementation, such as programming language, logic, and styles. Test cases are derived

http://users.ece.cmu.edu/~koopman/des_s99/sw_testing/#reference

International Journal of Education and Science Research Review
 Volume-1, Issue-6 December- 2014 E- ISSN 2348-6457, P- ISSN 2349-1817

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 60

from the program structure. White-box testing is also called glass-box testing, logic-driven testing or design-

based testing.

There are many techniques available in white-box testing, because the problem of intractability is eased by

specific knowledge and attention on the structure of the software under test. The intention of exhausting some

aspect of the software is still strong in white-box testing, and some degree of exhaustion can be achieved, such

as executingeach line of code at least once (statement coverage), traverse every branch statements (branch

coverage), or cover all the possible combinations of true and false condition predicates (Multiple condition

coverage).

Control-flow testing, loop testing, and data-flow testing, all maps the corresponding flow structure of the

software into a directed graph. Test cases are carefully selected based on the criterion that all the nodes or paths

are covered or traversed at least once. By doing so we may discover unnecessary "dead" code -- code that is of

no use, or never get executed at all, which cannot be discovered by functional testing.

In mutation testing, the original program code is perturbed and many mutated programs are created, each

contains one fault. Each faulty version of the program is called a mutant. Test data are selected based on the

effectiveness of failing the mutants. The more mutants a test case can kill, the better the test case is considered.

The problem with mutation testing is that it is too computationally expensive to use. The boundary between

black-box approach and white-box approach is not clear-cut. Many testing strategies mentioned above, may not

be safely classified into black-box testing or white-box testing. It is also true for transaction-flow testing, syntax

testing, finite-state testing, and many other testing strategies not discussed in this text. One reason is that all the

above techniques will need some knowledge of the specification of the software under test. Another reason is

that the idea of specification itself is broad -- it may contain any requirement including the structure,

programming language, and programming style as part of the specification content.

We may be reluctant to consider random testing as a testing technique. The test case selection is simple and

straightforward: they are randomly chosen. Study in indicates that random testing is more cost effective for

many programs. Some very subtle errors can be discovered with low cost. And it is also not inferior in coverage

than other carefully designed testing techniques. One can also obtain reliability estimate using random testing

results based on operational profiles. Effectively combining random testing with other testing techniques may

yield more powerful and cost-effective testing strategies.

3.2.3 Performance testing

Not all software systems have specifications on performance explicitly. But every system will have implicit

performance requirements. The software should not take infinite time or infinite resource to execute.

"Performance bugs" sometimes are used to refer to those design problems in software that cause the system

performance to degrade.

Performance has always been a great concern and a driving force of computer evolution. Performance

evaluation of a software system usually includes: resource usage, throughput, and stimulus-response time and

queue lengths detailing the average or maximum number of tasks waiting to be serviced by selected resources.

Typical resources that need to be considered include network bandwidth requirements, CPU cycles, disk space,

disk access operations, and memory usage. The goal of performance testing can be performance bottleneck

identification, performance comparison and evaluation, etc. The typical method of doing performance testing is

using a benchmark -- a program, workload or trace designed to be representative of the typical system usage.

3.2.4 Reliability testing

Software reliability refers to the probability of failure-free operation of a system. It is related to many aspects of

software, including the testing process. Directly estimating software reliability by quantifying its related factors

International Journal of Education and Science Research Review
 Volume-1, Issue-6 December- 2014 E- ISSN 2348-6457, P- ISSN 2349-1817

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 61

can be difficult. Testing is an effective sampling method to measure software reliability. Guided by the

operational profile, software testing (usually black-box testing) can be used to obtain failure data, and an

estimation model can be further used to analyze the data to estimate the present reliability and predict future

reliability. Therefore, based on the estimation, the developers can decide whether to release the software, and

the users can decide whether to adopt and use the software. Risk of using software can also be assessed based

on reliability information. Advocates that the primary goal of testing should be to measure the dependability of

tested software.

There is agreement on the intuitive meaning of dependable software: it does not fail in unexpected or

catastrophic ways. Robustness testing and stress testing are variances of reliability testing based on this simple

criterion.

The robustness of a software component is the degree to which it can function correctly in the presence of

exceptional inputs or stressful environmental conditions. Robustness testing differs with correctness testing in

the sense that the functional correctness of the software is not of concern. It only watches for robustness

problems such as machine crashes, process hangs or abnormal termination. The oracle is relatively simple;

therefore robustness testing can be made more portable and scalable than correctness testing. This research has

drawn more and more interests recently, most of which uses commercial operating systems as their target, such

as the work in.

Stress testing, or load testing, is often used to test the whole system rather than the software alone. In such tests

the software or system are exercised with or beyond the specified limits. Typical stress includes resource

exhaustion, bursts of activities, and sustained high loads.

3.2.5 Security testing

Software quality, reliability and security are tightly coupled. Flaws in software can be exploited by intruders to

open security holes. With the development of the Internet, software security problems are becoming even more

severe.

Many critical software applications and services have integrated security measures against malicious attacks.

The purpose of security testing of these systems include identifying and removing software flaws that may

potentially lead to security violations, and validating the effectiveness of security measures. Simulated security

attacks can be performed to find vulnerabilities.

4. TESTING AUTOMATION

Software testing can be very costly. Automation is a good way to cut down time and cost. Software testing tools

and techniques usually suffer from a lack of generic applicability and scalability. The reason is straight-forward.

In order to automate the process, we have to have some ways to generate oracles from the specification, and

generate test cases to test the target software against the oracles to decide their correctness. Today we still don't

have a full-scale system that has achieved this goal. In general, significant amount of human intervention is still

needed in testing. The degree of automation remains at the automated test script level.

The problem is lessened in reliability testing and performance testing. In robustness testing, the simple

specification and oracle: doesn't crash, doesn't hang suffices. Similar simple metrics can also be used in stress

testing.

4.1 When to stop testing?

Testing is potentially endless. We cannot test till all the defects are unearthed and removed -- it is simply

impossible. At some point, we have to stop testing and ship the software. The question is when.

Realistically, testing is a trade-off between budget, time and quality. It is driven by profit models. The

pessimistic and unfortunately most often used approach is to stop testing whenever some, or any of the allocated

International Journal of Education and Science Research Review
 Volume-1, Issue-6 December- 2014 E- ISSN 2348-6457, P- ISSN 2349-1817

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 62

resources -- time, budget, or test cases -- are exhausted. The optimistic stopping rule is to stop testing when

either reliability meets the requirement, or the benefit from continuing testing cannot justify the testing cost.

This will usually require the use of reliability models to evaluate and predict reliability of the software under

test. Each evaluation requires repeated running of the following cycle: failure data gathering -- modeling --

prediction. This method does not fit well for ultra-dependable systems, however, because the real field failure

data will take too long to accumulate.

4.2 Alternatives to testing

Software testing is more and more considered a problematic method toward better quality. Using testing to

locate and correct software defects can be an endless process. Bugs cannot be completely ruled out. Just as the

complexity barrier indicates: chances are testing and fixing problems may not necessarily improve the quality

and reliability of the software. Sometimes fixing a problem may introduce much more severe problems into the

system, happened after bug fixes, such as the telephone outage in California and eastern seaboard in 1991. The

disaster happened after changing 3 lines of code in the signalling system.

In a narrower view, many testing techniques may have flaws. Coverage testing, for example. Is code coverage,

branch coverage in testing really related to software quality? There is no definite proof. As early as in, the so-

called "human testing" -- including inspections, walkthroughs, reviews -- are suggested as possible alternatives

to traditional testing methods. Advocates inspection as a cost-effect alternative to unit testing. The experimental

results in suggests that code reading by stepwise abstraction is at least as effective as on-line functional and

structural testing in terms of number and cost of faults observed.

Using formal methods to "prove" the correctness of software is also an attracting research direction. But this

method cannot surmount the complexity barrier either. For relatively simple software, this method works well.

It does not scale well to those complex, full-fledged large software systems, which are more error-prone.

In a broader view, we may start to question the utmost purpose of testing. Why do we need more effective

testing methods anyway, since finding defects and removing them does not necessarily lead to better quality. An

analogy of the problem is like the car manufacturing process. In the craftsmanship epoch, we make cars and

hack away the problems and defects. But such methods were washed away by the tide of pipelined

manufacturing and good quality engineering process, which makes the car defect-free in the manufacturing

phase. This indicates that engineering the design process (such as clean-room software engineering) to make the

product have fewer defects may be more effective than engineering the testing process. Testing is used solely

for quality monitoring and management, or, "design for testability". This is the leap for software from

craftsmanship to engineering.

5. AVAILABLE TOOLS, TECHNIQUES, AND METRICS

There are an abundance of software testing tools exist. The correctness testing tools are often specialized to

certain systems and have limited ability and generality. Robustness and stress testing tools are more likely to be

made generic.

Mothora is an automated mutation testing tool-set developed at Purdue University. Using Mothora, the tester

can create and execute test cases, measure test case adequacy, determine input-output correctness, locate and

remove faults or bugs, and control and document the test.

NuMega's Boundschecker Rational's Purify .They are run-time checking and debugging aids. They can both

check and protect against memory leaks and pointer problems.

Ballista COTS Software Robustness Testing Harness .The Ballista testing harness is a full-scale automated

robustness testing tool. The first version supports testing up to 233 POSIX function calls in UNIX operating

systems. The second version also supports testing of user functions provided that the data types are recognized

International Journal of Education and Science Research Review
 Volume-1, Issue-6 December- 2014 E- ISSN 2348-6457, P- ISSN 2349-1817

 www.ijesrr.org Email- editor@ijesrr.org

www.ijesrr.org Page 63

by the testing server. The Ballista testing harness gives quantitative measures of robustness comparisons across

operating systems. The goal is to automatically test and harden Commercial Off-The-Shelf (COTS) software

against robustness failures.

6. DISCUSSION AND CONCLUSIONS

 Software testing is an art. Most of the testing methods and practices are not very different from 20 years

ago. It is nowhere near maturity, although there are many tools and techniques available to use. Good

testing also requires a tester's creativity, experience and intuition, together with proper techniques.

 Testing is more than just debugging. Testing is not only used to locate defects and correct them. It is

also used in validation, verification process, and reliability measurement.

 Testing is expensive. Automation is a good way to cut down cost and time. Testing efficiency and

effectiveness is the criteria for coverage-based testing techniques.

 Complete testing is infeasible. Complexity is the root of the problem. At some point, software testing

has to be stopped and product has to be shipped. The stopping time can be decided by the trade-off of

time and budget. Or if the reliability estimate of the software product meets requirement.

 Testing may not be the most effective method to improve software quality. Alternative methods, such as

inspection, and clean-room engineering, may be even better.

7. REFERENCES
1 Cem Kaner, Jack Falk , Hung Quoc Nguyen, ‘Testing Com-puter Software’ 2nd Edition , 2001 ,ISBN:81-7722-

015-2

2 Boris Beizer , ‘Software Testing Techniques’ , 1st Reprint Edi-tion,2002, ISBN: 81-7722-260-0

3 Booz Allen Hamilton, Gary McGraw , ‘Software Security Test-ing’ , IEEE SECURITY & PRIVACY , 2004 ,PP

1540-7993

4 ‘Test Plan Template (IEEE 829-1998 Format),2001, Software Quality Engineering -Version7.0

5 Toshiaki Kurokawa , Masato Shinagawa, ‘Tech-Nical Trends And Challenges Of Software Testing’ , S C I E N C E

& T E C H N O L O G Y T R E N D S , 2008 -Qua R T E R L Y R E V I Ew N O . 2 9
6 Ibm Rational Build Forge V 7.13 – Information Center Doc

7 Viraj Kumbhakarna, ‘A Practical Approach to Process Im-provement Using Parallel Processing’, PharmaSUG2011 -

Paper PO03

8 Lars-Ola Damm, ‘Evaluating and Improving Test Efficiency’ , Master Thesis ,Software Engineering , June 2002

,Thesis no: MSE-2002-15

